High temperature thermochemical energy storage based on calcination–carbonation chemical looping reactions

Larissa Fedunik-Hofman¹, Alicia Bayon², Jim Hinkley², Wojciech Lipinski³, Scott Donne¹ ¹School of Environmental & Life Sciences, The University of Newcastle, Callaghan NSW 2308 ²CSIRO Energy, Mayfield NSW 2304

³Research School of Engineering, The Australian National University, Canberra ACT 2601

AUSTRALIAN SOLAR THERMAL RESEARCH INITIATIVE

ASTRI

Concentrated solar power (CSP) is a promising source of clean electricity, however storage systems are essential to address the disparity between time-dependent solar availability and electricity demand. Thermochemical Energy Storage (TCES) based on metal carbonate/oxide calcination-carbonation chemical looping is a low cost, high energy storage density alternative to commercial molten salt storage systems.

Carbonate Looping Thermochemical Energy Storage

Process is based on metal oxide calcination carbonation chemical looping (cyclic process):

Figure 3: SEM microphotographs at 10K magnification. Left: Sample (synthesised $Ca_{0.95}Sr_{0.05}O$, calcined at 900°C) carbonated in TGA at 750°C. Right: Sample (commercial $CaCO_3$) calcined at 900°C and carbonated at 750°C in TGA. The synthesised oxide retains its smaller particle size after one cycle and shows reduced sintering.

Decomposition/calcination (driven by solar thermal power) absorbs energy: $X(O_{+}) + best \rightarrow XO_{+} + CO_{-}(X = alkaline earth metal)$

 XCO_3 + heat \rightarrow XO + CO₂ (X = alkaline earth metal)

Recombination/carbonation releases energy: XO + CO₂ \rightarrow XCO₃ + heat

If reaction is completely reversible, thermal energy can be recovered completely by recombination

Material performance analysis

Starting materials: commercial CaCO₃ and SrCO₃

Synthesised oxides and mixed oxides: CaO and $Ca_xSr_{1-x}O$ ($Ca_{0.95}Sr_{0.05}O$, $Ca_{0.75}Sr_{0.25}O$, $Ca_{0.5}Sr_{0.5}O$)

Seeking fast kinetics and maximum energy storage density in 100% CO_2 atmosphere

Evaluate structural cyclability of candidate materials as a function of cycle number

Advantages and opportunities for carbonate looping TCES

- ✓ High storage energy densities → 692 vs 232 kWh_{th}/m³ for solar salts (Edwards & Materić, 2012)
- Potentially lower corrosiveness \rightarrow solids (XCO₃ and XO)
- Relatively low cost materials
- Reduced storage tank and receiver size and construction cost
- \mathbf{x} Higher complexity \rightarrow solid particle receiver
- **x** Requires gas storage (CO₂)
- \mathbf{x} Higher temperatures \rightarrow higher re-radiation losses

Material synthesis

Pechini method uses $Ca(NO_3)_2$ and $Sr(NO_3)_2$ nitrate as precursors in a citric acid solution. Ethylene glycol is added to form a resin, which is then dried out in an oven and calcined in a tube furnace (Jana et al., 2010).

CHARACTERISATION PROCESS	APPARATUS	INFORMATION OBTAINED
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)	SETSYS TGA (CSIRO Energy, Newcastle)	 Reaction kinetics of calcination and carbonation cycling Kinetic parameters: activation energy, reaction rate Thermodynamic parameters: enthalpy of reaction
X-ray diffraction (XRD)	XRD Panalytical (EMX, University of Newcastle)	 XRD characterization: atomic composition and crystallite size In-situ (heating stage) XRD analysis: reaction kinetics, time evolution of crystallites
Scanning electron microscopy (SEM)	Zeiss FESEM (EMX, University of Newcastle)	 Images of microstructure before and after calcination and carbonation: indicates particle size and structure
Nitrogen adsorption/desorption	N ₂ chemisorption (NIER, University of Newcastle)	 Gas adsorption isotherms: indicate specific surface area and porosity
Infrared spectroscopy	Fourier Transform Infrared Spectroscopy (University of Newcastle)	 Characteristic transmittance peaks at wavenumbers indicates presence of functional groups (such as oxides, hydroxides or carbonates)

Figure 2: TGA mass change curves for synthesised $Ca_{0.95}Sr_{0.05}O$. Left: Carbonation at 750°C shows 69.2% conversion compared to theoretical conversion of CaO (only 49.0% conversion achieved with commercial CaCO₃). Right: Calcination at 900°C followed by second carbonation at 750°C. The second carbonation conversion achieves 53.7% of the theoretical value.

 Table 1: Material characterisation techniques and descriptions.

Challenges

Lack of prior art detailing kinetic modelling of carbonates in 100% CO₂ atmosphere

Reaction irreversibilities, incomplete conversion

AUTHOR CONTACT	REFERENCES	ACKNOWLEDGEMENTS			** 2
Larissa Fedunik-Hofman e larissa.fedunik-hofman@csiro.au w www.astri.org.au	Edwards, S. and V. Materić (2012). "Calcium looping in solar power generation plants." <u>Solar Energy 86</u> : 2494-2503. Jana, P., et al. (2010). "Cobalt based catalysts prepared by Pechini method for CO2-free hydrogen production by methane decomposition." <u>International Journal of Hydrogen Energy 35(19): 10285-10294.</u>	The Australian Solar Thermal Research Initiative (ASTRI) program is supported by the Australian Government, through the Australian Renewable Energy Agency (ARENA).	THE UNIVERSITY OF NEWCASTLE AUSTRALIA	Australian National University	Australian Government Australian Renewable Energy Agency